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ABSTRACT 

The present article aims to bring the early basic foundations of modern integral calculus in front of the 

mathematics teachers and students especially in higher education. This contains the definitions of elementary - 

nonelementary functions; range and difficulty of problem of indefinite integration; existence of integrals; and lack 

of notations of nonelementary functions etc. In addition to this Bernoulli‟s conjecture; Laplace‟s theorem; 

Liouville‟s theorem; Chebyshev‟s theorem; Hardy‟s theorem; Inverse function theorem, etc. have also been 

presented with their applications. 
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INTRODUCTION 

The knowledge of teachers plays an important role in teaching and the basic theory of the subject makes the pillar 

in understanding it. To make the calculus students friendly, many attempts have been made to improve the 

understanding of the subject and the research scope while teaching it. Rasmussen et al. (2014) have identified four 

trends in the calculus research literature and discussed the gaps in literature and the new areas of calculus research 

needed. Swiden et al. (2014) have identified the objectification processes involved in making sense of the concept 

of an indefinite integral. Kouropatov et al. (2014) proposed an approach to the integral concept for advanced high 

school students and provide evidence for the potential of this approach to support students in acquiring an in depth 

view of the integral. Torner et al. (2014) noticed a reduction in the content of calculus and a more informal 

approach. Eichler et al. (2014) focused the belief systems towards teaching calculus of mathematics teachers. But 

authors both writers and researchers did not discuss the basic foundations of the integral calculus, which makes the 

subject complete. There are many unsolved problems in integral calculus, which have not been discussed by the 

authors and even by mathematics teachers in teaching it. These also do not appear in the calculus or integral 

calculus textbooks. 

 

For example, why does the indefinite integral of exp(x
2
) not exist? We know that the indefinite integral of cosx is 

sinx + c, is based on the fact that the differential coefficient of sinx+c is cosx and integration is the reverse process 

of differentiation. But if we ask what is the indefinite integral of (sinx)/x? We shall not find any reason except that 

there does not exist any function, which when differentiated gives (sinx)/x. Therefore we cannot integrate (sinx)/x 

in indefinite integral sense. This is only due to the lack of basic concepts and foundations of integral calculus. 

Recently Yadav (2012) have used the basic concepts and foundations of integral calculus to study indefinite 

nonintegrable functions. 
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Basic Concepts of Integral Calculus 
The study of integral calculus is incomplete without the following concepts: 

Elementary Function: A function is called an elementary function if it can be written as y=f(x), where f(x) 

represents an expression formed by combining a finite collection of powers of x, trigonometric functions, 

hyperbolic functions, exponentials, logarithms, inverse trigonometric functions, and inverse hyperbolic functions 

together with additions, subtractions, multiplications, divisions, powers, and compositions. 

 

Example: f(x)=sinx+x, f(x)=5x
2
+2x-e

x
, etc. 

A function which is not elementary is known as a non-elementary function. Not all functions are elementary. The 

most common example of a non-elementary function is a piecewise-defined function. Well known examples of 

non-elementary functions are: 






numberirrationalanisxfi

numberrationalaisxif
xf

1

0
)( , f(x)=[x], etc. 

Other types of non-elementary functions arise in calculus as “anti-derivatives” or „indefinite integral‟ of an 

elementary function. Because the differentiation of an elementary function is always an elementary function, 

where as its indefinite integral may or may not be elementary. The non-elementary functions arising due to the 

integration have been named as „indefinite nonintegrable functions‟ by Yadav to make it clear that it was due to 

indefinite integration. 

Example: The indefinite integrals  dx
x

ex

,  dxx )sin( 2

 
are not elementary, i.e. non-elementary. 

 

Range and Difficulty of Problem of Indefinite Integration 
The indefinite integration of an elementary function f(x) is defined as a solution F(x), composed of elementary 

functions, such that F'(x) f (x) . In mathematical symbol, it is denoted by 
x

a

F(x) f (t)dt f (x)dx k     

Which on differentiation gives F'(x) f (x), where the constant of integration k corresponds to the value of the 

integral for the lower limit a suppose that f(x) belongs to a special class of functions S. We may ask whether F(x) 

is itself a member of S, or can be expressed, according to some simple standard mode of expression, in terms of 

functions which are members of S. 

 

The range and difficulty of the problem of indefinite integration will depend upon the choice of: 

(i) a class of functions, and  

(ii) a standard mode of expression. 

We shall take S to be the class of elementary functions, and our mode of expression to be that of explicit 

expression in finite terms. 

 

Non-elementary or Indefinite Nonintegrable Functions in Integral Calculus 

An indefinite integral of an elementary function is either an elementary function or can be expressed in terms of 

elementary functions in finite number of steps. If we say that an indefinite integral f (x)dx is elementary (or 

integrable) it means that its integral exists and can be expressed in terms of elementary functions in closed form. 
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Those functions whose indefinite integrals are neither elementary nor can be expressed in terms of elementary 

functions are classically known as non-elementary. To make it clear that they arise due to integration, we call them 

nonintegrable functions or indefinite nonintegrable functions. 

Example:   kedxe xx  and kx
x

dx







1

2
tan

1
 are elementary; whereas  dx

x

xsin
 and  dxx )sin( 2  are non-

elementary. 

 

Existence of Integrals and Lack of Notations of Functions 

The integral of an elementary function is the assertion of the Fundamental Theorem of Calculus: Every continuous 

function has an anti-derivative. Although it is not closely bound up with the assumption that the integrand is 

continuous, it may be extended to wide classes of functions with discontinuities. 

But there is no guarantee that we can find a formula for an anti-derivative in terms of elementary functions like 

sine, cosine, logarithm, and so forth. There are elementary functions which have anti-derivatives but they cannot 

be expressed in terms of elementary functions due to the lack of notations of those functions. 

Example: The error function
2xe dx

 , the exponential integral
xe

dx
x

, the sine integral
sin x

dx
x , the cosine 

integral
cos x

dx
x , etc. 

 

Basic Theorems of Integral Calculus 
The search for algorithm for elementary and non-elementary integral of elementary functions has been the subject 

of many efforts in the past. Some of them are as follows: 

 

John Bernoulli’s Conjecture (1712): The integral of any rational function is expressible in term of other rational 

functions, trigonometric functions, and logarithmic functions. 

Example: kx
x

dx







1

2
tan

1
, kx

x

xdx



)1ln(

1

2 2

2
, k

xx

dx





1
2

. 

 

Laplace’s Theorem (1812): “A rational function has an anti-derivative and its integral is always an elementary 

function. In general it is composed of two parts: one of a rational function and the other the transcendental part or 

logarithmic part”. 

Example: kxx
x

xdx



)1ln(

1
, k

ix

ixi
x

x
dx

xx

xx










 ln

2
ln

2)1(

)1( 2

2

22

, etc. 

 

Liouville’s Theorems: 

In 1833 Joseph Liouville based his work on the fact that the derivative of an elementary function is again an 

elementary function created a framework for constructive integration by finding out when indefinite integrals of 

elementary functions are again elementary functions. He introduced a theorem, which is reminiscent of Laplace‟s 

theorem, now known as: 

 

Liouville’s First Theorem on Integration: 

If an algebraic function is integrable in finite terms, its anti-derivative is the finite sum of an algebraic function and 

the logarithms of algebraic functions. In mathematical symbols, if f(x) is an algebraic function of x and if dxxf )(

is elementary, then 
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



n

i

iio UCUdxxf
1

)log()(  

Where the Ci‟s are constants and the Ui‟s are algebraic functions of x. 

 

In 1835, he generalized this theorem to several variables and gave: 

 

Strong Liouville theorem: 

(a) If F is an algebraic function of ,,.....,,, 21 myyyx where ,,.....,, 21 myyy are functions of x whose derivatives 

dx
dy

dx
dy

dx
dy m..,,........., 21 are rational functions of ,,.....,,, 21 myyyx then 

  dxyyyxF m,.....,,, 21  

is elementary if and only if 

  



n

j

jjm UCUdxyyyxF
1

021 )log(,.....,,,  

Where the Cj‟s are constants and the Uj‟s are algebraic functions of .,.....,,, 21 myyyx  

 

(b) If  myyyxF ,.....,,, 21 is a rational function and 
dx

dy
dx

dy
dx

dy m..,,........., 21 are rational functions of 

,,.....,,, 21 myyyx then the Uj‟s in part (a) must be rational functions of .,.....,,, 21 myyyx
 

 

In the same year 1835, he found the special case of this theorem, which gives the necessary and sufficient 

conditions for the existence of elementary function of some special functions. 

 

Strong Liouville theorem (special case): 

If f(x) and g(x) are rational functions with g(x) non-constant, then 

 dxexf xg )()(  

is elementary if and only if there exists a rational function R(x) such that 

).(')()(')( xgxRxRxf   

For any such R(x), 
( )( ) g xR x e is an elementary anti-derivative of f(x). 

 

By applying the above theorems he proved that the following integrals 

( )

dx

P x
 , 

2


xe dx , 

xe
dx

x
, 

 dxe
2x

, dx
x

e x




,  dx
x

xsin
,   dx

x

xcos
,  xlog

dx
 

Cannot be expressed in terms of elementary functions. 

 

There are two important properties obtained from the special case of strong Liouville theorem: 

 

Property I:  dxex axn 22
 for n an integer, is non-elementary for 0a .  

For n=0 and a=-1, this is the error function. By this property, he proved the following non-elementary functions: 

  dtetdxx t222log
,   dtedx

x

t2

2
log

1

, 
  dtedx

x

e at
ax

2

2  
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Property II: 
 dxex cxn  for n a positive integer and c a nonzero constant, is non-elementary.  

By this property he proved the following non-elementary functions: 

  dt
t

e
dxe

t
ex

,   dt
t

e
dx

x

t

log

1
, 

  dx
x

xxdxx
log

1
)log(log)log(log

, 

.Im
sin









  dx

x

e
dx

x

x ix

 
 

Chebyshev’s Theorem:
 

In 1853 P. L. Chebyshev worked in the area of integration of specific forms of algebraic functions closely 

associated with the work of Abel and Liouville, and presented the theorem: 

 

P. L. Chebyshev’s Theorem: If p, q, and r are rational numbers and a, b are real numbers with 0,, rba , then 

  dxbxax qrp )(  

is elementary if and only if at least one of  




















 

qr

p
orq

r

p 1
,,

1
is an integer. 

 

Applying this theorem, he showed that the following integrals 

  dxx
22

3

1 
,

dxx  31
,

dxx
 41 ,  dxxsin and  dxxcos

 

are non-elementary functions. 

He found the following corollaries from this theorem: 

Corollary 1: If m and n are integers, then   dxx mn
1

)1(
 
is elementary if and only if 1m , or 1n , or 

2 nm , or .nm   

Example:  xdxx nm cossin  and  dxxtan are elementary. 

 

Corollary 2: He considered the integral 

  dx)x1(xu qp , 

where each of p and q is rational and not zero. He proved that, for the integral to be elementary, it is necessary and 

sufficient that at least one of p, q and p + q be an integer. It is known as Chebyshev‟s Integral. 

 

Hardy’s Theorem: 

In 1905 G. H. Hardy found another special case of the strong Liouville theorem known as: 

Liouville-Hardy Theorem: If f(x) is a rational function, then  xdxxf log)(
 
is elementary if and only if there 

exists a rational function g(x) and a constant C such that 
C

f (x) g '(x)
x

  . 

By this theorem, he showed that the integrals
log x

dx,a 0
(x a)


 ,  

dx
x

x

)1(

log
2

, and  
 dxx

21sec
 
are non-elementary. 
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At the last of this section, let us discuss the inverse function theorem, which was known to Liouville (1841) in 

writing his paper on Riccati equation. It also appears in the works of F. D. Parker (1955), J. H. Staib (1966), and in 

a recent note by E. Key (1994). It states that: 

 

Inverse Functions Theorem: Let f(x) and f
-1

(x) be inverses of one another on some closed interval [a, b]. If f(x) 

and f
-1

(x) are elementary functions over [a, b], then  dxxf )( is elementary if and only if 
 dxxf )(1 is elementary. 

 

Example:  dxxlog is non-elementary since the integral of the inverse function of its integrand,  dxex2

, is non-

elementary and  dx
xlog

1
is non-elementary since  dxe x

1

is non-elementary. 

 

The above theorems are the basic properties of integral calculus, out of which the strong Liouville theorem and its 

special cases are the most important and useful. 

 

Application of the Basic Theorems 

Example: Integrate 1/(1+x
2
) w. r. to x. 

We have 

2

12
[ , (1 )] [ , ]

1

dx
F x x dx F x y dx

x
  

   , where 1 2
dy

x F
dx

 
  

 
 

By strong Liouville theorem 

02
1

log
1

n

j j

j

dx
U C U

x 

 


    ……….. (1) 

On differentiating it we get, 





n

j j

j

j
U

U
CU

x 1

02

'
'

1

1
 

Now,  

















 )1(

1

)1(

1

2

1

)1)(1(

1'
'

1

0
ixixixixU

U
CU

n

j j

j

j
 

1 (1 ) ' (1 ) '

2 (1 ) (1 )

ix ix

i ix ix

  
  

  
 

1
{log(1 )}' {log(1 )}'

2
ix ix

i
     

Where the sign („) denotes differentiation with respect to x. Comparing it with (1) we get '

0 0U   therefore U0=K 

and C1=(1/2i), C2=(-1/2i), U1=(1+ix), U2=(1-ix). 

Therefore, 
21

dx

x
 

1
{log(1 )} {log(1 )}

2
ix ix

i
    + K 

1 (1 ) 1 (1 )
log log

2 (1 ) 2 (1 )

ix ix
K K

i ix i ix

 
    

 
 

1( )
log tan

2 ( )

i i x
K x K

i x


   


. 

 

Example: Find xxe dx . 

By strong Liouville theorem 

x=R‟(x)+R(x) ……………. (1) 

Let R(x)=p/q; gcd(p, q)=1. Therefore from (1) 
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2

' 'qp pq p
x

q q


   

2 ' 'xq qp pq pq       [ ' ] 'q p xq p pq     
'

'
pq

p xq p
q

    ………. (2) 

which means either q divides p, or q divides q‟. But q cannot divide p, which implies that q divides q‟ and 

therefore q is a constant. Without loss of generality we may let q=1 i. e. R(x)=p. Then from (2) 

p‟-x+p=0 i. e. p‟+p=x ……. (3) 

Since p is a polynomial, let p=ax+b, as degree of p(x) cannot be greater than 1. Then from (3) we have 

a+ax+b=x i. e. ax+(a+b)=x which implies a=1 and a+b=0 which gives b=-1. 

Therefore p(x)=x-1, i. e. R(x)=(x-1). 

So we have 

( ) ( 1) ( 1)x x x xxe dx R x e x e x e K       

 

Example: Find
2

2 xxe dx . 

By strong Liouville theorem 

2x=R‟(x)+2xR(x), where R=p/q with gcd(p, q)=1. Therefore 

2x=R‟(x)+2xR(x) implies that 
2

' '
2 2

qp pq p
x x

q q


   

22 ' ' 2xq qp pq xpq      [ ' 2 2 ] 'q p xq xp pq     

'
' 2 2

pq
p xq xp

q
     ………. (1) 

which implies either q/p or q/q‟. But q cannot divide p because gcd(p, q)=1. Therefore q/q‟ which means that q is a 

constant. Without loss of generality we may assume that q=1. Therefore from (1) p‟-2x+2xp=0 i.e. p‟+2xp=2x. 

Comparing the degrees of x, we find that p=1 and p‟=0, which implies that R(x)=1. Therefore 
2 2 2 2

2 ( ) 1.x x x xxe dx R x e e e K     

 

Example: Show that the integral 0,

2

 adx
x

eax

 is non-elementary.
 

Proof: We have  

  dx
ax

axe
dx

x

e axax

22

2
22

 
Putting ax

2
=z we get 

2ax z
1 z

2

2axe 1 e 1
dx dz z e dz

2ax 2 z 2

   
 

Which is non-elementary from Property II. Hence the given integral is non-elementary. 

 

Example: Show that the integral  dx
x

xsin
is non-elementary.

 
Proof: We have using Euler‟s identity 
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ixsin x e
dx img dx

x x

 
  

 
 

 

Taking g(x)=ix and f(x)=1/x, we see that it is elementary if and only if there exists a rational function R(x) which 

satisfies the identity 

1
R '(x) iR(x)

x
 

 

1
R '(x) & R(x) 0

x
  

 
Which is impossible. Hence the given function is non-elementary. 

 

Similarly we can solve all most all the examples of indefinite integrals by the help of the theorems, corollaries, 

properties, and their special cases. 
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